Lp Sampling from Streams

joint work with
Gábor Tardos (Alfréd Rényi Institute of Mathematics) Hossein Jowhari (MADALGO)

July 25, 2012
Mert Sağlam

Lp Sampling from Update Streams

- The input is an update stream.
- We have an n dimensional vector x, initially zero.
- The input is updates to the coordinates of x
- When the stream is

$$
(2,5)(6,-2)(5,4)(2,-3)(8,-2)
$$

exhausted, an ε relative error sampler outputs a coordinate J s.t.

- An augmented sampler also returns an ε appx. to x_{J}

x| 0 | θ | 0 | 0 | θ | -0 | 0 | $-Q$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Lp Sampling from Update Streams

- In SODA 2010 Monemizadeh and Woodruff introduced Lp sampling.
- They gave poly($1 / \varepsilon$, log n) space ε error Lp samplers for p in $[0,2]$.
- In FOCS 2011 Andoni, Krauthgamer and Onak improved space usage to $\mathrm{O}\left(\varepsilon^{-}\right.$ ${ }^{\mathrm{P}} \log ^{4} \mathrm{n}$) bits for p in [1,2].
- We give an Lp samplers with $O\left(\varepsilon^{-p} \log ^{2} n\right)$ bits of space for p in $[1,2$).
- Our sampler works for p in [0,1] too, taking $O\left(\varepsilon^{-1} \log ^{2} n\right)$ space. For $\mathrm{p}=0$ space usage is O($\log ^{2} n$).
- We show that any one pass Lp sampler requires $\Omega\left(\log ^{2} n\right)$ bits.
- Any one pass augmented sampler requires $\Omega\left(\varepsilon^{-p} \log n\right)$ space.

Our Lp Sampler for $p=1$

- The bare-bones algorithm
- For $i=1, \ldots, n$ pick r_{i} uniformly at random from real interval [0,1]
- Set $z_{i}=x_{i} / r_{i}$
- Find i with $\left|z_{i}\right|$ maximal.
- If $\left|z_{i}\right|>\varepsilon^{-1}\|x\|_{1}$, output $J=i$, otherwise output FAIL.

What is the probability that we output coordinate i ?

Our Lp Sampler for $p=1$

Claim 1: $\operatorname{Pr}[J=\mathrm{i}] \leq \varepsilon|x| /\|x\|_{1}$

- We output a coordinate only if $\left|z_{i}\right|>\varepsilon^{-1}\|x\|_{1}$.
- This happens only when $\left|x_{i}\right| / r_{i}>\varepsilon^{-1}\|x\|_{1}$.
Claim 2: $\operatorname{Pr}[J=i] \geq\left(\varepsilon-\varepsilon^{2}\right)\left|x_{i}\right| /\|x\|_{1}$

r| 0.3 | 0.2 | 0.4 | 0.9 | 0.2 | 0.4 | 0.2 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $=$ | | | | | | | |
| z | 10 10 0 0 20 -5 0
 -20 | | | | | | |$=\frac{1}{}$

- Conditioned on $\left|z_{i}\right|>\varepsilon^{-1}\|x\|_{1}$, probability that $\left|z_{j}\right|>\varepsilon^{-1}\|x\|_{1}$ is $\leq \varepsilon|x| /\|x\|_{1}$ by Claim 1.
- Union bound over all $j, \exists j$ has probability ε.

Our Lp Sampler for $p=1$

- By Claim 2, $\operatorname{Pr}[J=i] \geq\left(\varepsilon-\varepsilon^{2}\right)$ $\left|x_{i}\right| /\|x\|_{1}$
- Summing over all j, we see that the procedure outputs a coordinate with probability $\left(\varepsilon-\varepsilon^{2}\right)$
- Hence if we repeat in parallel $O\left(\varepsilon^{-1} \log (1 / \delta)\right)$ times, and return the first non failing output, we get a coordinate with (1- δ) probability.

But how do we find max coordinate of z in small space?

We don't..

Our Lp Sampler for $p=1$

- Take $O(\log n)$ random binary strings $\mathrm{m}^{1}, \ldots, \mathrm{~m}^{\log \mathrm{n}}$ each of length n
- Take $\mathrm{O}(\log \mathrm{n}) \mathrm{n}$ dimensional random +-1 vectors k^{1}, \ldots
- Calculate $z^{*} m^{1 *} k^{\prime}$ for $I=1, \ldots, \log n$. Here * is coordinate-wise multiplication.
- Estimate z_{i} by the median of z_{i} $\times m_{i}^{\prime} \times k_{i}^{\prime}$ for all l.

0.3	0.2	0.4	0.9	0.2	0.4	0.2	0.1

$=$

Z| 0 | 10 | 0 | 0 | 20 | -5 | 0 | -20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- It is known that $z_{i}{ }_{i}=z_{i} \pm 3\|z\|_{2}$ with all but n^{-c} probability.

Our Lp Sampler for $\mathrm{p}=1$

- Approximating z_{i} by z_{i}^{*} changes our analysis only if

$\epsilon^{-1}\|x\|_{1}-\|z\|_{2} \leqslant\left|z_{i}\right| \leqslant \epsilon^{-1}\|x\|_{1}+\|z\|_{2}$

r| 0.3 | 0.2 | 0.4 | 0.9 | 0.2 | 0.4 | 0.2 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$=$

- Conditioned on $\|z\|_{2}<10\|x\|_{1}$,

z| 0 | 10 | 0 | 0 | 20 | -5 | 0 | -20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | z_{i} is in this interval only with probability $2 \varepsilon^{2}\left|\mathrm{x}_{\mathrm{i}}\right| /\|x\|_{1}$

- Condition $\|z\|_{2}<10\|x\|_{1}$ happens with good probability and can be detected if does not happen via standard norm estimation algorithms.

Finding Duplicates

- Given an array of length $\mathrm{n}+1$ where each item is in [1..n]

| 5 | 1 | 2 | 7 | 2 | 4 | 3 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | find an item that appears at least twice.

- By pigeonhole principle a duplicate exists.
- There is a O(1) words RAM algorithm due to Floyd that runs in linear time.
- In the streaming model, a folklore p pass deterministic algorithm with $O\left(n^{1 / p} \log ^{1-1 / p}\right)$ space.

Finding Duplicates

- Muthukrishnan asks whether there exists a constant pass polylog space algorithm.
- In 2007, Tarui shows that any deterministic p pass algorithm needs $\Omega\left(\mathrm{n}^{1 /(2 p-1)}\right)$ space.
- In SODA'09 Gopalan and Radhakrishnan give a one pass $O\left(\log ^{3} n\right)$ space randomized algorithm.

5	1	2	7	2	4	3	6

- We give a $O\left(\log ^{2} n\right)$ space one pass randomized algorithm
- We show that any one pass algorithm takes $\Omega\left(\log ^{2} n\right)$ space.

Finding Duplicates Upper Bound

- Run the $1 / 2$ relative error sampler on a vector x.
- Subtract 1 from each coordinate of x.
- For each item i increment x_{i} by one.
- For each item i that appears multiple times, $x_{i}>0$.
- We have n decrements and $\mathrm{n}+1$ increments.

A| 5 | 1 | 2 | 7 | 2 | 4 | 3 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Hence a perfect L1 sample returns a positive coordinate with more than $1 / 2$ probability.
- $1 / 2$ relative error sampler returns positive coordinate with constant probability.
- We run O(log(1/delta)) instances of the L1 sampler and return the first positive coordinate.

Lower Bounds Map

Conjecture
$\Omega\left(\log ^{2} n \log (1 / \delta)\right)$

Augmented Indexing Problem

- Alice is given a length n string x over the alphabet [m].
- Bob is given $i \in[n]$ and x_{j} for j < i .
- Bob's goal is to output x_{i}
- Alice sends a single message to Bob.

We show that in any one round protocol with (1- δ) success probability, Alice sends a message of size Ω (nlog m) whenever (1- δ) $>1 / \mathrm{m}^{1-\varepsilon}$

Lower Bounds Map

Universal Relation

- Alice and Bob are given a binary string each.
- Call these strings x and y.
- Players exchange messages and the last player outputs a coordinate i such that $x_{i} \neq y_{i}$.

Universal Relation

- Suppose Alice get a length s string z over [2t].
- Bob gets $i \in[s]$ and z_{j} for $j<i$.
- The players construct vectors u and v as follows.
- Let e_{i} be the 2^{t} dimensional vector 0 everywhere except coordinate i and is 1 in coordinate i.
- For $\mathrm{j}=1, \ldots, \mathrm{~s}$ Alice appends 2^{sj} copies of $e_{z j}$. This is u.
- For $\mathrm{j}=1, \ldots, \mathrm{i}-1$ Bob appends 2^{sj} copies of e_{zj}. Bob appends zeros to reach length |u|. This is v .
- They randomly shuffle the positions in u and v.
- A mismatch reveals x_{i} with $1 / 2$ probability.

Universal Relation

- Setting $s=t=O(\log n)$ guarantees that $|u|=|v|<n$
- By the augmented indexing lower bound we have $\Omega(s t)=\Omega\left(\log ^{2} n\right)$ lower bound.

Lower Bounds Map

Lp Sampling Lower Bound

- Alice and Bob are given binary strings u and v.
- Suppose there is a one pass Lp sampler with S space.
- We give a one round universal relation protocol that communicates S bits.
- Let x be the vector the sampling algorithm implicitly keeps.
- Alice generates updates so that $x=u$.
- Bob generates updates so that $x=u-v$.
- We see that x_{i} is positive iff $u_{i} \neq v_{i}$.
- Any Lp sampler returns a positive coordinate with constant probability. Hence an $\Omega\left(\log ^{2} n\right)$ lower bound holds.

Thank You!

Questions?

