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Lp Sampling from Update Streams

 The input is an update stream.

 We have an n dimensional x|lo|l@alo|o|@|@|0|Q
vector X, initially zero. 1 2 3 4 5 6 7 =8

 The input is updates to the
coordinates of x

* When the stream is (2,5 (6:-2) (5.4) (2,-3) (8,°2)

exhausted, an € relative error
sampler outputs a coordinate

Js.t. pr[J=i]=( | X,

1

1+¢) - +n ©
* An augmented sampler also [ x]] p
returns an € appx. to X

n
Here, lIx[I5=2 |x”
i=1



Lp Sampling from Update Streams

e |In SODA 2010 Monemizadeh

and Woodruff introduced Lp
sampling.

They gave poly(1/s, log n)
space € error Lp samplers for
p in [0,2].

In FOCS 2011 Andoni,
Krauthgamer and Onak

improved space usage to O(g

"log™n) bits for p in [1,2].

We give an Lp samplers
with O(e*log”n) bits of space
forpin[1,2).

Our sampler works for p in
[0,1] too, taking O(s*log”n)
space. For p=0 space usage is
O(log?n).

We show that any one pass
Lp sampler requires Q(log”n)
bits.

Any one pass augmented
sampler requires Q(e*logn)
space.



Our Lp Sampler for p=1

 The bare-bones algorithm X
« Fori=1,...,n pick r uniformly at /
random from real interval r
[0,1] _
. Set Z,-=X,-/ r. z

« Find iwith |Z,-| maximal.

o If|z]> €™||x]|,, output J=i,
otherwise output FAIL.

o|l2|o|lo|4]|-2]0]-2
03|02|04]09|02]04]|02]01
o120l 0] 0|2 -5]| 0 [-20

What is the probability that
we output coordinate i ?




Our Lp Sampler for p=1

Claim 1: Pr{J =] < g[x|/Ix]l,

 We output a coordinate only

if [z|>€e*||x||..

* This happens only when

Claim 2: Pr[J=i] 2 (e—ez)lxil/

-1
| x|/ r. > €7 |x]|..

>

>

Conditioned on [z|> €
probability that |zj|> e|x]|. is
< elle/llxll1 by Claim 1.

Union bound over all j, 9j has
probability €.
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Our Lp Sampler for p=1

e By Claim 2, Pr[J=i] = (e-€?)

|Xi|/||X||1 x|o|2]|o|lo|la|2]|0]-=2
« Summing over all j, we see /

that the procedure outputs a r|103[02|04[09({02]|04]02]|01

coordinate with probability _

(e-€?)

 Hence if we repeat in parallel
O(etlog(1/8)) times, and
return the first non failing

output, we get a coordinate But how do we find max
with (1-8) probability. coordinate of z in small space ?

We don't..



Our Lp Sampler for p=1

Take O(log n) random binary
strings m*,...,m'*¢"each of

length n

Take O(log n) n dimensional
random +-1 vectors k?....

Calculate z* m' * k'for
|=1,...,log n. Here * is
coordinate-wise
multiplication.

Estimate 4 by the median of 4
X m'ix k'i for all I.

03]02(04(09(02]|04)|0.2

0.1
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e It is known that
z* =z + 3|z with all

but n™ probability.




Our Lp Sampler for p=1

» Approximating z by z*
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changes our analysis only if x| 0| 2
/

& lIxl—llzll, <[z )<eIxll,Hlzl, o302
z| O 10

. Conditioned on ||z|| <10||x]|.,

20

-20

4 is in this interval only with
probability 2&*|x|/{|x||,

. Condition | z|]| <10[ x|, happens

with good probability and can be
detected if does not happen via
standard norm estimation
algorithms.




Finding Duplicates

e Given an array of length n+1
where each item is in [1..n]
find an item that appears at
least twice.

* By pigeonhole principle a
duplicate exists.

e Thereis a O(1) words RAM
algorithm due to Floyd that
runs in linear time.

e |n the streaming model, a
folklore p pass deterministic
algorithm with O(n*? log**’")
space.




Finding Duplicates

« Muthukrishnan asks whether Alsl1l2l71214al3]56
there exists a constant pass
polylog space algorithm.

* We give a O(log”n) space one
e |n 2007, Tarui shows that any pass randomized algorithm
deterministic p pass

: _  We show that any one pass
1/(2p-1)
?IgaC)C"e'thm needs Q(n ) algorithm takes Q(logn)
pace. space.

 In SODA'0O9 Gopalan and
Radhakrishnan give a one

pass O(log®n) space
randomized algorithm.



Finding Duplicates Upper Bound

Run the % relative error
sampler on a vector x.

Subtract 1 from each
coordinate of x.

For each item i increment X
by one.

For each item i that appears
multiple times, xi>O.

We have n decrements and
n+1 increments.

A

S|11 |2 |72 |43 |6

 Hence a perfect L1 sample

returns a positive coordinate
with more than % probability.

Y relative error sampler
returns positive coordinate
with constant probability.

We run O(log(1/delta))
instances of the L1 sampler
and return the first positive
coordinate.




Lower Bounds Map

Q(log’nlog(1/8))

d'log’n)  Q(slog n)



Augmented Indexing Problem

e Aliceis given alength n string « Bob is given i€[n] and x_ for j
x over the alphabet [m]. <i j

. Alice sends a single message  * Bob's goal is to output x..
to Bob.

We show that in any one round protocol with (1-6)
success probability, Alice sends a message of size
Q(nlog m) whenever (1-8)>1/m?*



Lower Bounds Map

Q(log’nlog(1/8))

d'log’n)  Q(slog n)



Universal Relation

« Alice and Bob are given a
binary string each.

e Call these strings x and y.

e Players exchange messages
and the last player outputs a
coordinate i such that X #Y.

RPIFROIFRPIO|IO|O|F
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Universal Relation

Suppose Alice get a length s
string z over [21].

Bob gets i€[s] and 4 forj <.

The players construct vectors
u and v as follows.

Lete be the 2' dimensional

vector O everywhere except
coordinateiandis 1in
coordinate i.

For j=1,...,s Alice appends 2°’
copies of e, This is u.

For j=1,...,i-1 Bob appends 2*
copies of e, Bob appends

zeros to reach length [ul. This
iS V.

They randomly shuffle the
positions in u and v.

A mismatch reveals X with %
probability.



Universal Relation

e Settings =t =0(log n)
guarantees that |u| = [v| <n

* By the augmented indexing
lower bound we have

Q(st)=Q(log*n) lower bound.



Lower Bounds Map

Q(log’nlog(1/8))

d'log’n)  Q(slog n)



Lp Sampling Lower Bound

e Alice and Bob are given binary strings u and v.
e Suppose there is a one pass Lp sampler with S space.

 We give a one round universal relation protocol that
communicates S bits.

 Let x be the vector the sampling algorithm implicitly keeps.
» Alice generates updates so that x = u.
 Bob generates updates so that x = u -v.

« We see that X is positive iff u #v.

 Any Lp sampler returns a positive coordinate with constant
probability. Hence an Q(log”n) lower bound holds.



Thank You!



Questions?
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