Lp Sampling from Streams

joint work with Gábor Tardos (Alfréd Rényi Institute of Mathematics) Hossein Jowhari (MADALGO)

July 25, 2012

Mert Sağlam

Lp Sampling from Update Streams

- The input is an *update stream*.
- We have an *n* dimensional vector *x*, initially zero.
- The input is updates to the coordinates of *x*
- When the stream is exhausted, an ε relative error sampler outputs a coordinate J s.t.
- An *augmented sampler* also returns an ε appx. to x

$$\Pr[J=i] = (1 \pm \epsilon) \frac{|x_i|^p}{\|x\|_p^p} \pm n^{-c}$$

Here,
$$||x||_{p}^{p} = \sum_{i=1}^{n} |x_{i}|^{p}$$

Lp Sampling from Update Streams

- In SODA 2010 Monemizadeh and Woodruff introduced Lp sampling.
- They gave poly(1/ε, log n) space ε error Lp samplers for p in [0,2].
- In FOCS 2011 Andoni, Krauthgamer and Onak improved space usage to O(ε⁻ ^Plog⁴n) bits for *p* in [1,2].

- We give an Lp samplers with O(ε^{-p}log²n) bits of space for p in [1,2).
- Our sampler works for p in

 [0,1] too, taking O(ε⁻¹log²n)
 space. For p=0 space usage is
 O(log²n).
- We show that any one pass Lp sampler requires Ω(log²n) bits.
- Any one pass augmented sampler requires Ω(ε^{-p}log n) space.

- The bare-bones algorithm
- For *i*=1,...,*n* pick *r_i* uniformly at random from real interval [0,1]
- Set $z_i = x_i / r_i$.
- Find *i* with $|z_i|$ maximal.
- If $|z_i| > \varepsilon^{-1} ||x||_1$, output J=i, otherwise output FAIL.

x	0	2	0	0	4	-2	0	-2
/								
r	0.3	0.2	0.4	0.9	0.2	0.4	0.2	0.1
=								
Ζ	0	10	0	0	20	-5	0	-20

What is the probability that we output coordinate *i* ?

Claim 1: $\Pr[J = i] \le \varepsilon |x_i| / ||x||_1$

- We output a coordinate only if $|z_i| > \varepsilon^{-1} ||x||_1$.
- This happens only when $|x_i|/r_i > \varepsilon^{-1}||x||_1$.

Claim 2: $\Pr[J=i] \ge (\varepsilon - \varepsilon^2) |x_i| / ||x||_1$

- Conditioned on $|z_i| > \varepsilon^{-1} ||x||_{1,}$ probability that $|z_j| > \varepsilon^{-1} ||x||_{1}$ is $\leq \varepsilon |x_i| / ||x||_{1}$ by Claim 1.
- Union bound over all j, ∃j has probability ε.

x	0	2	0	0	4	-2	0	-2
/								
r	0.3	0.2	0.4	0.9	0.2	0.4	0.2	0.1
=								
Ζ	0	10	0	0	20	-5	0	-20

- By Claim 2, $\Pr[J=i] \ge (\varepsilon \varepsilon^2)$ $|x_i| / ||x||_1$
- Summing over all *j*, we see that the procedure outputs a coordinate with probability (ε-ε²)
- Hence if we repeat in parallel O(ε⁻¹log(1/δ)) times, and return the first non failing output, we get a coordinate with (1-δ) probability.

But how do we find max coordinate of z in small space ?

We don't..

- Take O(log n) random binary strings m¹,...,m^{log n} each of length n
- Take O(log n) n dimensional random +-1 vectors k¹,...
- Calculate z * m^I * k^I for I=1,...,log n. Here * is coordinate-wise multiplication.
- Estimate z_i by the median of z_i × m_i^I × k_i^I for all I.

• It is known that $z_i^* = z_i \pm 3 ||z||_2$ with all but n^{-c} probability.

 Approximating z_i by z^{*}_i changes our analysis only if

 $\epsilon^{-1} ||x||_1 - ||z||_2 \le |z_i| \le \epsilon^{-1} ||x||_1 + ||z||_2$

- Conditioned on $||z||_2 < 10 ||x||_1$, z_i is in this interval only with probability $2\epsilon^2 |x_i| / ||x||_1$
- Condition $||z||_2 < 10 ||x||_1$ happens with good probability and can be detected if does not happen via standard norm estimation algorithms.

Finding Duplicates

- Given an array of length n+1 where each item is in [1..n] find an item that appears at least twice.
- By pigeonhole principle a duplicate exists.
- There is a O(1) words RAM algorithm due to Floyd that runs in linear time.
- In the streaming model, a folklore p pass deterministic algorithm with O(n^{1/p} log^{1-1/p}) space.

Α	5	1	2	7	2	4	3	6	
---	---	---	---	---	---	---	---	---	--

Finding Duplicates

- Muthukrishnan asks whether there exists a constant pass polylog space algorithm.
- In 2007, Tarui shows that any deterministic p pass algorithm needs Ω(n^{1/(2p-1)}) space.
- In SODA'09 Gopalan and Radhakrishnan give a one pass O(log³n) space randomized algorithm.

A 5 1 2 7 2 4 3

- We give a O(log²n) space one pass randomized algorithm
- We show that any one pass algorithm takes Ω(log²n) space.

Finding Duplicates Upper Bound

- Run the ½ relative error sampler on a vector x.
- Subtract 1 from each coordinate of x.
- For each item *i* increment *x*_{*i*} by one.
- For each item *i* that appears multiple times, x_i>0.
- We have n decrements and n+1 increments.

A	5	1	2	7	2	4	3	6
---	---	---	---	---	---	---	---	---

- Hence a perfect L1 sample returns a positive coordinate with more than ½ probability.
- ½ relative error sampler returns positive coordinate with constant probability.
- We run O(log(1/delta)) instances of the L1 sampler and return the first positive coordinate.

Augmented Indexing Problem

- Alice is given a length n string x over the alphabet [m].
- Alice sends a single message to Bob.
- Bob is given i∈[n] and x_j for j
 < i.
- Bob's goal is to output x_i.

We show that in any one round protocol with $(1-\delta)$ success probability, Alice sends a message of size $\Omega(\text{nlog m})$ whenever $(1-\delta)>1/m^{1-\epsilon}$

Lower Bounds Map

Universal Relation

- Alice and Bob are given a binary string each.
- Call these strings x and y.
- Players exchange messages and the last player outputs a coordinate i such that x_i ≠ y_i.

Universal Relation

- Suppose Alice get a length s string z over [2^t].
- Bob gets $i \in [s]$ and z_i for j < i.
- The players construct vectors u and v as follows.
- Let e_i be the 2^t dimensional vector 0 everywhere except coordinate i and is 1 in coordinate i.

- For j=1,...,s Alice appends 2^{s-j} copies of e_{zj}. This is u.
- For j=1,...,i-1 Bob appends 2^{s-j} copies of e_{zj}. Bob appends zeros to reach length |u|. This is v.
- They randomly shuffle the positions in u and v.
- A mismatch reveals x, with ½ probability.

Universal Relation

- Setting s = t = O(log n) guarantees that |u| = |v| < n
- By the augmented indexing lower bound we have $\Omega(st)=\Omega(\log^2 n)$ lower bound.

Lower Bounds Map

Lp Sampling Lower Bound

- Alice and Bob are given binary strings u and v.
- Suppose there is a one pass Lp sampler with S space.
- We give a one round universal relation protocol that communicates S bits.
- Let x be the vector the sampling algorithm implicitly keeps.
- Alice generates updates so that x = u.
- Bob generates updates so that x = u -v.
- We see that x_i is positive iff $u_i \neq v_i$.
- Any Lp sampler returns a positive coordinate with constant probability. Hence an $\Omega(\log^2 n)$ lower bound holds.

Thank You!

Questions?